4.9t^2+762t+20=0

Simple and best practice solution for 4.9t^2+762t+20=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4.9t^2+762t+20=0 equation:



4.9t^2+762t+20=0
a = 4.9; b = 762; c = +20;
Δ = b2-4ac
Δ = 7622-4·4.9·20
Δ = 580252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{580252}=\sqrt{4*145063}=\sqrt{4}*\sqrt{145063}=2\sqrt{145063}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(762)-2\sqrt{145063}}{2*4.9}=\frac{-762-2\sqrt{145063}}{9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(762)+2\sqrt{145063}}{2*4.9}=\frac{-762+2\sqrt{145063}}{9.8} $

See similar equations:

| 3(2x+6)=6(x+3) | | 3(2x-7)+2x=-45 | | 5+1/3(9k-6=6 | | 1/2(2n+5)=3 | | 15x=60x-9 | | 4+3c-14=10 | | 62-n=41 | | 14x^2-9x-5=0 | | a/2+1/5=2/10 | | 4+3c-14=-10 | | 2x+1+4x=-106 | | 6(5-8v)+12=5 | | 5+2p=8-4p+6p | | 8/6=7n+9/9 | | -8x-(-16)+2x=-5x+10 | | a/2+1/5=21/10 | | -1f+7+9=-2-1f | | (x.30)=1200 | | 6x-x-24=46 | | 3(-5+x=-x+13 | | 2/3(4x-12)=-20 | | 3g-(7g-10)=-1/2(4g-36) | | -2(4x-8)=-4(2x-3) | | 8–2z=4 | | 8(2x)+32=4(4x+8) | | 2=4–2m | | 18x-12=-12x | | -3(x-1)=3(-5-x) | | 5=1/6z | | 7*x/4-2=10 | | 84=7s+21 | | b/6+31=33 |

Equations solver categories